

Introducing our FREE Dropped Object Software

DROPS Forum 19th September 2017

David Jamieson (CEng, MIMechE) Technical Safety Engineer

Presentation Overview

- Who we are
- Subsea Dropped Objects
- Recommended Practice
- Live Demonstration

Who we are

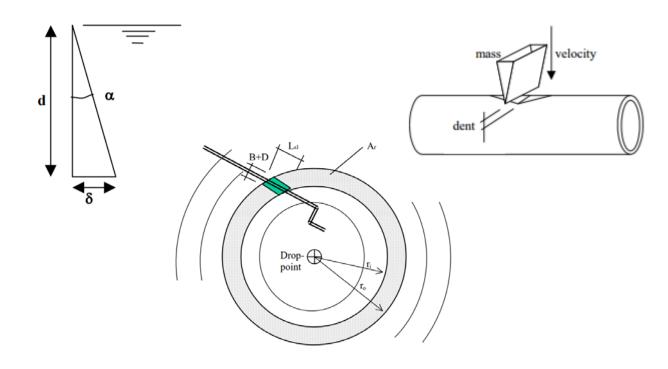
- Founded 2015
- We are passionate about our software
- We want to make understanding risk straightforward for our customers
- Offer FREE Dropped Object Risk Assessment Software

Subsea Dropped Objects

- Suspended loads dropped into sea may damage subsea infrastructure, including pipelines
- Considered a Major Accident Hazard (MAH)
- Requires Risk Assessment to demonstrate risks have been reduced to ALARP
- Further risk reduction measures may be required

Subsea Dropped Objects

- Further risk reduction measures include, but are not limited to:
 - Exclusion zones for lifting being put in place
 - Limits imposed on max. load lifted
 - Reduction in number of lifts performed
- For new builds:
 - Separation between crane and pipeline
 - Burial of pipeline
 - Protection of pipeline e.g. rock dumping, mattresses
 - Install Subsea Isolation Valve (SSIV)

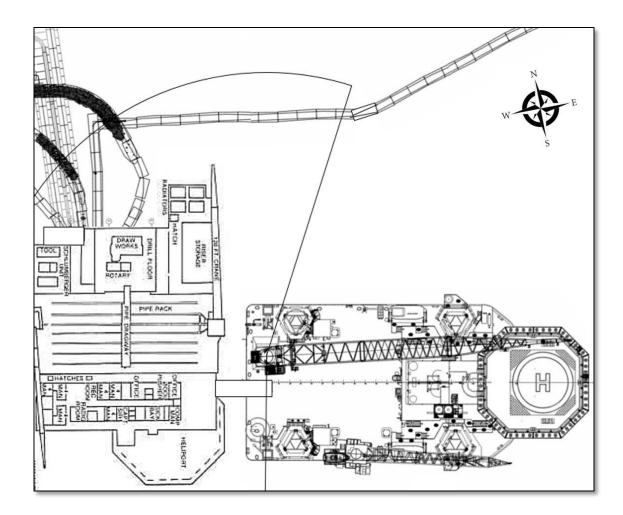

Recommended Practice

- DNV-RP-F107 'Risk Assessment of Pipeline Protection'
- Outlines methodology for carrying out a Quantitative Risk Assessment (QRA) of damaging a subsea pipeline
- Used widely throughout industry
- Our software has been validated with the techniques within this document

Recommended Practice

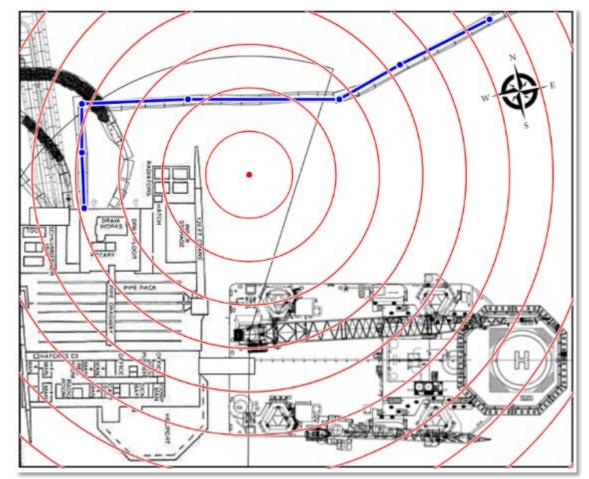
- DNV-RP-F107 uses calculations to determine:
 - Probability of impact from dropped load
 - Risk of hydrocarbons being released

LIVE DEMONSTRATION


Live Demonstration

- New Study
- Draw-Pipeline[™] Tool
- Design Basis
- Results
- PDF Download

New Study


• Upload subsea layout drawing

Draw-PipelineTM Tool

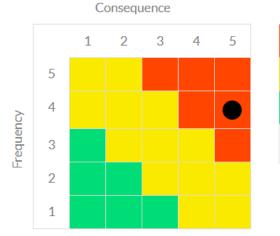
• Scale image, choose drop-point and then draw the pipeline

Design Basis

• Enter pipeline details, number and size of lifts, water depth etc.

Pipel	line Data	
Type of pipeline	Steel Pipeline 🔻	
Contains Hydrocarbons?		2
Outer Diameter (D)	508	mm
Wall Thickness (t)	18	mm
Yield Stress (dy)	450	N/mm ²
Addition	al Protection	
Impact resistance of additional protection		0 kJ

		LINITO	nmental Data	
Water Depth			100 m	
		Classifica	ation of Objects	
No	Description	Weight in air (tonnes)	Breadth (m)	Number lifted per year
1	Flat/Long shaped	<2	12	30
2		2 to 8	12	50
3		>8	12	5
4	Round/Box shaped	<2	5	40
5		2 to 8	5	15
6		>8	5	35
7	Round/Box shaped	>>8	5	0
				175

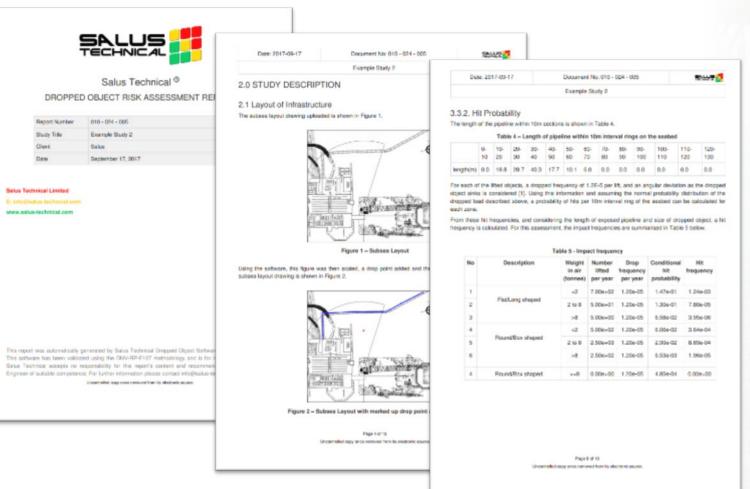


Results

- Risk assessment performed automatically
- Results available instantly

Annual hit frequency	2.57e-03	
Annual frequency of failure	2.32e-03	* for "Steel Pipeline"
Frequency of ignited release	2.32e-04	

Example Risk Matrix



PDF Download

 Technical Report immediately available for download

Summary

- Completely FREE
- Available for use right now at <u>www.salus-</u> <u>technical.com</u>
- Validated with DNV-RP-F107
- Dropped Object Risk Assessment performed automatically
- Results and Technical Report available immediately
- Thank you for listening

Any questions?

info@salus-technical.com